Reformtürk 14 Yıldır Sizlerle
Sayfa 1/3 123 SonSon
21 sonuçtan 1 ile 10 arası

Konu: Genetik

  1. #1
    SPONSOR REKLAM ReLaKsT - ait Kullanıcı Resmi (Avatar)
    Üyelik tarihi
    10 Eylül 2006
    Yer
    Uzaklardan
    Yaş
    32
    Mesajlar
    424
    Tecrübe Puanı
    18

    Standart Genetik

    Acı Geni


    Kanadalı bilim adamları, genetik bir kontrol mekanizmasının, acı hissini düzenlediğini buldular. Toronto Üniversitesi bilim adamı Michael Salter ve ekibi ile Amgen Enstitüsü bilim adamı Josef Penninger, DREAM (downstream regulatory element antagonistic modulator) proteini ile ilgili bilgileri taşıyan bir geni araştırdılar.

    DREAM proteininin, mutluluk hormonu olarak bilinen endorfinlerden olan dinorfin üretimini engellediği biliniyor. Bu doğal albüminlerin ağrı kesici etkileri var. Bilim adamları, DREAM geni bulunmayan mutant fareler ürettiler. Bu fareler, daha çok dinorfin üretip, acıya karşı çok az duyarlı hale geldiler.

    Salter, farelerin her türlü acıyı, tüm dokularında daha az hissettiklerini, sinirlerin tahribi sonucu ortaya çıkan ve bugüne kadar engellenemeyen nöropatik ağrıların da buna dahil olduğunu söyledi. Araştırmada elde ettikleri bilgilerin, ağrı tedavisi konusunda yapılan araştırmaların sonuçlarından çok farklı olduğunu belirten Salter, ağrı tedavisi araştırmalarının morfin üzerine kurulu olduğunu, morfinin endorfini taklit ettiğini kaydetti.

    Salter, DREAM geninin keşfi sayesinde, ağrı tedavisinde tamamen yeni bir açının oluştuğunu, bundan sonra, DREAM genini ya da proteinini engelleyici ve bu sayede dinorfin üretimini teşvik edici tedavi yöntemlerinin de aranacağını vurguladı.

    Bilim adamları, ağrı hissetmeyen farelerin, fiziksel ya da psikolojik olarak son derece sağlıklı göründüklerini, morfin ve opyat içerikli ağrı kesicilerin aksine, farelerin normalin üzerinde ürettikleri endorfine bağımlı hale gelmediklerini bildirdiler.


  2. #2
    ReLaKsT - ait Kullanıcı Resmi (Avatar)
    Üyelik tarihi
    10 Eylül 2006
    Yer
    Uzaklardan
    Yaş
    32
    Mesajlar
    424
    Tecrübe Puanı
    18

    Standart --->: <<<~~~~ Génét!k ~~~~>>>

    Bacaklardaki Gözler


    Yakın bir geçmişte araştırmacılar, bacaklarında gözler olan sirkesinekleri yetiştirmeyi başardılar. Burada söz konusu denetim mekanizmasına göre, belli bir gen, gözün nerede olacağını belirledikten sonra, eksiksiz bir gözün oluşumunda işlevi olan tüm genler o noktada çalışmaya başlar.

    Sirkesineklerinde gözler, yanlış yerde olmakla birlikte her şeyleriyle eksiksizdi ve doğru bağlantılar kurulsaydı herhalde normal göz gibi işlev görebileceklerdi. Bu deneysel işlem, tek başına da önemli. Ancak özellikle evrimi kavrayış biçimimize getirdiği yenilik açısından incelenmeli.

    Bu deneylerde, bir fareye ait göz-konum geni kullanılarak sirkesineğinin yanlış konumda bir göz geliştirmesi sağlandı. Farenin geni, sirkesineğininkine o kadar çok benziyor ki, genetik mühendisliği kullanılarak bir sirkesineğine yerleştirildiği zaman aynı işlevi yerine getirmeyi sürdürebiliyor. Bu, kayda değer bir olgu. Sirkesinekleri, farelerden evrimsel olarak en az yarım milyar yıldır ayrılmış bulunuyorlar.

    Diğer bir deyişle, en son yarım milyar yıl önce ortak bir ataları vardı. Fare/sirkesineği ortak atasındaki bu göz-konum geni, daha sonra biri fareyi,diğeriyse sirkesineğini oluşturacak iki ayrı soyun da kalıtsal mirası oldu ve en az bir milyar yıllık bir evrim süresince değişmeden kaldı (yarım milyar yıldır bu iki soy ayrı olarak evrimleştikleri için. toplam evrimleşme süresi 2 x 0.5 = l milyar yıl).

    Sirkesineği ve farenin gözlerinin yapısal ve optik açıdan çok temel farklılıkları olduğu gözönüne alındığında, bu çok önemli. Herhalde her iki soy da, kendi amaçları doğrultusunda en uygun göz yapısını kusursuzlastırırken, gözün konumunu belirleyen temel sistemi korudular. Doğal seçilimin ayıklama gücünün bundan daha iyi bir kanıtı olamaz.

    Biri fare. diğeri sirkesineği olmak üzere, evrimin iki ayrı kolundan yarım milyar yıl önce yola çıkan bu "ata gen"i düşünün. Hem fare, hem de sirkesineği soylarında milyonlarca mutsyon olmuş ve bunlar doğal seçilim tarafından ayıklanmış olmalı. Tüm bu koruyucu doğal seçilimin sonucunda, çok uzun zamandır ayrı olmalarına karşın, bu iki gen aynı işlevi koruyor ve hatta yer değiştirebiliyorlar.

    Darwin, doğal seçilimin zararlı mütasyonlan önleme yeteneğinin farkındaydı elbette. Ama doğal seçilimin, yarım milyar yıl boyunca bir işlevi koruyacak kadar etkili bir ayıklayıcı olduğunu öne sürmeye herhalde cesaret edemezdi.

  3. #3
    ReLaKsT - ait Kullanıcı Resmi (Avatar)
    Üyelik tarihi
    10 Eylül 2006
    Yer
    Uzaklardan
    Yaş
    32
    Mesajlar
    424
    Tecrübe Puanı
    18

    Standart --->: <<<~~~~ Génét!k ~~~~>>>

    Baş Nakli

    Biyonik insanlığa doğru evrimin uç noktasında, malzememiz, beynin yapayı değil, gerçeği. Önümüzdeki yüzyıl için hedef, daha şimdiden alıştığımız tek ya da çok organ nakli, hücre nakli, gen nakli değil, doğrudan beyin nakli. Daha doğru bir deyişle beynimize yeni bir beden nakli. Bilim kurgu mu? Safsata mı? Bu kadarı da olmaz mı?

    Bilim adamları öyle düşünmüyor. Zaten bundan neredeyse 30 yıl önce, 1970 yılında bir araştırmacı ekibi, bir rhesus maymununa, bir hemcinsinden alınan bir kafayı nakletti. Ameliyat sonrasında yeni başıyla uyanan maymun, tüm bilincine ve başsal (kranyel) sinir faaliyetlerine yeniden kavuştu. Araştırmacılar bunu maymunun uyanık kalmasından, saldırgan tavırlarından, yemek yiyebilmesinden ve odada dolaşan insanları gözleriyle takip edebilmesinden belirlediler.

    Bilim adamlarına göre, insan kafasının nakli için de fazla bir değişiklik gerekmiyor. Dikkat edilmesi gereken önemli bir husus, (en azından normal sıcaklıkta) kan dolanımı olmadan uzun süre yaşayamayacak olan beyne yeterli ve düzenli bir kan (dolayısıyla oksijen) akımını sağlamak.

    Beynin yaşamsal fonksiyonlarını izlemek üzere kafatasına elektroensefalograf elektrotları yerleştirilecek. Ayrıca kafaları, tümüyle hareketsiz duruma getirmek ve kolayca taşınmalarını sağlamak için çevrelerine yuvarlak bir mengene takılacak.

    İki insan arasında kafa naklini geçekleştirmek için bilim adamları şöyle bir ameliyat senaryosu çiziyorlar: Önce iki ayrı ameliyat ekibinin ayrı masalarda çalışmasına olanak verecek kadar geniş bir ameliyathane gerekli. Hastalar anestezi ile uyutulduktan sonra, birbirleriyle eşzamanlı olarak çalışan ekipler, her iki hastanın boyun çevrelerini derin biçimde kesecekler ve doku katmanlarını dikkatle ayırarak karotid atardamarlarını, ana toplardamarları ve omurgalarını açığa çıkaracaklar.

    Daha sonra, düzenli kan (ve oksijen) akımını sağlamak için her damara, üzerlerine pıhtılaşmayı önleyecek heparin maddesi sürülmüş iğneler (kateter) sokulacak. Ekipler, hastaların boyun omurlarından kemikleri çıkardıktan sonra omuriliği saran koruyucu katmanları kesip ayıracaklar.

    Omurga ve omuriliğin ayrılmasından sonra, hastalardan birinin başı alınarak hortumlarla, yine başı alınmış öteki hastanın vücudundaki kan dolaşımına bağlanacak. Bu işlem tamamlandıktan sonra da cerrahlar, hortumları teker teker keserek baş ile yeni vücudunun atar ve toplar damarlarını birbirine dikecekler. Omurilik parçaları da metal plakalarla birbirine bağlanacak ve daha sonra kas ve deri katmanları da teker teker birbirine dikilecek.

    Araştırmacılar, ameliyatı kolaylaştırıcı bir yöntem olarak, kafada dolaşan kanın sıcaklığını 10°C'ye kadar düşürmeyi tasarlıyorlar. Böylelikle beynin metabolizması yavaşlatılabilecek ve beyin ameliyat süresince bir saat kadar hasar görmeden kansız kalabilecek.

    Önemli bir sorun, kafanın ve bedenin birbirlerini reddetmelerini önleyebilmek. Çünkü, karaciğer, böbrek gibi organ nakillerinde bağışıklık sistemi tepkisini ketleyen ilaçların, tüm bedenin naklinde etkili olup olmayacağı bilinmiyor.

  4. #4
    ReLaKsT - ait Kullanıcı Resmi (Avatar)
    Üyelik tarihi
    10 Eylül 2006
    Yer
    Uzaklardan
    Yaş
    32
    Mesajlar
    424
    Tecrübe Puanı
    18

    Standart --->: <<<~~~~ Génét!k ~~~~>>>

    Çapkınlık Geni


    Aşkın kimyasını enine boyuna araştıran bilim adamları, artık küçük bir genetik müdahale ile yılların uslanmaz çapkınlarını dünyanın en sadık eşine çevirebilecek. Bazı hayvanların (ve tabii insanların) neden çok eşliliğe yöneldiği sorusuna yanıt arayan bilim adamları, işin sırrını son dönemde ABD'de geniş çayırlık alanlarda yaşayan bir tür tarla faresi üzerinde yaptıkları deneyler sonucunda keşfetti.

    Cinsel davranış ve tercihlerin beynin kimyasına bağlı olarak geliştiği anlaşıldı. Yani bireyi iflah olmaz bir çapkın veya sadık bir aşık yapan şeyler beyinde gizli. Eğer beyin kimyası, aşk ve tutkuyu birleştirebilen bir yapıdaysa, o beynin sahibi ister istemez çapkınlığa elveda diyor, gözü �ilk göz ağrısı� ndan başkasını görmüyor.

    Deneyin kahramanı tarla fareleri, bilim dünyasında sadakatleriyle ünlü. Eldeki bilgilere göre bu hayvanlar, cinsel erginlik dönemine girer girmez ilk tanıştıkları eşleriyle başlattıkları beraberliklerini ömürlerinin sonuna kadar götürüyor. Erkekleri için hiçbir dişinin aşk oyunu, cilvesi onları yoldan çıkarmaya yetmiyor. Öyle ki, eşi çok erken yaşlarda ölse bile ömürlerinin geri kalan yıllarını yine de tek başlarına geçirmeyi tercih ediyor.

    Bulgularını açıklayan ABD'deki Emory Universitesi'nden Dr. Thomas Insel'e göre, aşk düpedüz bağımlılık. Bu bağımlılığı oluşturan hayvanlar, eşlerini asla terketmiyor. Bu beyin kimyası ve sonuçta bağımlılık olgusu, memelilerin de dahil olduğu hayvanlar aleminin %3'ünde mevcut.

    Sadakat "oxcytocin" ve "vasopressin" denilen iki tür hormonla ilgili. "Oxcytocin" sosyal davranışlar üzerinde etkili olurken, "vasopressin" hafızayla ilgili.

    Tarla farelerinde ilk cinsel beraberlik ve çift oluştuğunda, beyindeki bu iki hormon üretimi artıyor. Yapay olarak bu hormonların miktarı değiştirilince de paralel olarak farelerin cinsel davranışları da değişiyor. Dr. Insel, bu hormonların, insan ve çoğu hayvanda olduğunu söylüyor. Ancak tek eşlilerde, beynin bağımlılık ve özlem duygusunu kontrol eden bölgesinde ortaya çıkıyor.

    Yani sadık aşıklar, beyinlerindeki bu hormonal dengeler nedeniyle, partnerlerine bir tür bağımlı hale geliyorlar. Deneyin bundan sonraki aşamasında sözü edilen sadık aşık tarla faresinden alınan genler, önüne gelen dişiyle yatan çapkın farelere verildi ve sonuçlara bakıldı. Gerçekten de tarla faresinin geni verilen çapkın fareler akıllanıp, eşlerine son derece sadık aşıklar haline geldi.

    Dr. Insel, araştırmalarından insanlar için bir aşk iksiri üretilmesi gibi bir sonuç çıkmayacağını ancak ebeveynleriyle normal bir ilişki geliştiremeyen otistik çocuklar için ilaç yapılabileceğini belirtti

  5. #5
    ReLaKsT - ait Kullanıcı Resmi (Avatar)
    Üyelik tarihi
    10 Eylül 2006
    Yer
    Uzaklardan
    Yaş
    32
    Mesajlar
    424
    Tecrübe Puanı
    18

    Standart --->: <<<~~~~ Génét!k ~~~~>>>

    Duyarga Yerine Bacak


    Küçük genetik değişimlerle ortaya çıkan önemli işlevsel sonuçların bir örneği de gelişim sırasında görülüyor. Döllenmede siz yanyana dizili 3,5 milyar birimlik genetik bilgiyi -genomunuzu- içeren bir hücreden pek fazlası değilken, bugünkü haliniz olan karmaşık çok-hücreli varlığın oluşabilmesi için gerekli tüm bilginin bu dizilimde -DNA molekülünde- bulunması gerekiyor. Bu olay, yani tek boyutlu bir bilgi dizisinden, şaşırtıcı karmaşıklıkta üç-boyutlu bir varlığın oluşumu, gerçekten biyolojik bir mucize.

    Her bir hücrede genetik bilginin tümü bulunmasına karşın, farklı organlara ait hücrelerde farklı genler devreye girer: Örneğin bir kas hücresinde kullanılan genler, karaciğer hücresinde kullanılandan farklı olsa da, hücre çekirdeklerinin içeriği aynıdır. Yumurta evresinden yetişkinlik evresine olan gelişimse, gen işleyişinin kapsamlı ve uyumlu bir örneğini oluşturuyor. Bu gelişim, hücrelerin vücut içindeki konumlarını "bilmelerini" gerektiriyor. Çünkü, örneğin bir kangurunun kuyruğunun ucundaki bir hücre, kangurunun beyninin bulunacağı bölgedeki bir hücreden çok farklı bir gelişim göstermek durumunda.

    Bu konumsal bilginin iletiliş şekli çok iyi anlaşılmadığı gibi, bir canlıdan diğerine ve bir gelişim evresinden diğerine farklılık da gösterebiliyor. Yine de gelişim biyologlarının, konumsal bilgiyi belirleyen bu genetik sistem konusunda oldukça fazla bilgi sahibi oldukları bir tür var. Bu tür, genetikçilerin çok sevdiği sirkesineği Drosophila melanogaster.

    Sirkesineği, genetikçilerinin Drosophila'nın "mütant" adı verilen genetik varyantlarıyla özellikle ilgilendikleri bilinir. Mütasyonların çoğunda sinek göreceli olarak az etkilenir. Örneğin "beyaz"la tanımlanan mütasyon, sineğin kırmızı yerine beyaz gözlü olmasına yol açar. Öte yandan daha önemli etkileri olabilen bir grup mütasyon da var. Bu "homeotik mütasyonlar"ın en iyi bilinen iki tanesinden biri olan "antennapedia" tipinde, sineğin kafasında antenler (duyargalar) yerine eksiksiz bir çift bacak büyüyor. "Bithorax" adı verilen ikincisi de aynı ölçüde garip:

    Sineğin vücudunda bir yerine iki tane toraks (orta boğum) bulunuyor. Buysa, orta boğumda içerilen organların tümünden ikişer tane olması anlamına geliyor. Örneğin, iki kanadı olması gerekirken, sineğin kanat sayısı dört. Tüm bunlar bir bilim kurgu filminden (belki de Jeff Goldblum'un "Sinek" adlı filminden) parçalar gibi görünse de aslında bu garip mütasyonlarm tek yaptığı, gelişim sırasında sineğin konumsal algılamasını bozmak. Moleküler genetikçilerin antennapedia ve bithorax'a neden olan genleri belirlemeleriyle. uygun yerdeki en basit mütasyonların bile bu garipliklere neden olabileceği ortaya çıkmış oldu.

    Gelişim sırasında sineğin hücrelerindeki konumsal algılama, büyük ölçüde söz konusu genler tarafından denetleniyor. Sinekler, birbirlerine büyük benzerlikler gösteren, ama yine de farklılaşmış bir dizi boğumdan oluşur. Dolayısıyla farklı konumlardaki boğumlar, konumlarına uygun olan organı edinirler: Kafa boğumunda duyargalar, orta boğumdaysa bacaklar ve kanatlar oluşur. İşte homeotik mütasyonlar, boğumun bu konumsal kimliğinde karmaşaya neden oluyorlar.

    Öyle ki, antennapedia tipi mütasyon durumunda kafa boğumu kendisini orta boğum "sanıyor" ve duyarga yerine bacak oluşturuyor. Ancak burada unutulmaması gereken, bacağın, yanlış yerde bulunmasına karsın eksiksiz bir bacak olduğu. Yani konumsal genler, bir bacağı ya da duyargayı kodlayan bir grup genin aynı anda devreye girmesini sağlıyorlar. Buradan da görüleceği gibi gelişim, hiyerarşik bir denetim süreci: Denetim diziliminin üst düzeylerinde bulunan genler, dizilimin art düzeylerindeki birçok genin kaderini belirliyorlar.

    Sonuç olarak, denetleyici genlerde oluşması koşuluyla, tek bir gendeki küçük bir değişimin bile canlı üzerinde çok önemli bir etkisi olabiliyor. Evrimle ilgili sonuç açık: Çok miktarda genetik değişim olmaksızın da önemli morfolojik değişimler gerçekleşebilir. Örneğin, bir bithorax mutant doğal seçilim tarafından yeğlenseydi, sirkesineklerinin dört kanatlı akrabaları ortaya çıkabilirdi. Ve işte yeniden kendimizi Darwinizm'in çerçevesi içinde buluyoruz; sözünü ettiğimiz bu mütasyonlar Darwin'e çok yabancı olsa bile, bu mütasyonların kaderlerini de her zaman olduğu gibi doğal seçilim belirtiyor.

  6. #6
    ReLaKsT - ait Kullanıcı Resmi (Avatar)
    Üyelik tarihi
    10 Eylül 2006
    Yer
    Uzaklardan
    Yaş
    32
    Mesajlar
    424
    Tecrübe Puanı
    18

    Standart --->: <<<~~~~ Génét!k ~~~~>>>

    Gen Nakli


    ABD'li bilimadamları, farelere gen nakli yaparak öğrenme kabiliyetini artırmayı başardılar. Bu teknik, ileride insanlara da uygulanabilecek, hafızası zayıflayanlara takviye yapılacak.

    Bebeklerin zeka düzeyinin artırılmasında da kullanılabilecek yöntem, Princeton Üniversitesi'ndeki araştırmacılar tarafından geliştirildi. Bilimadamları, yaptıkları bir deneyde, beyinde öğrenmeyi ve hafızanın gelişmesini sağlayan NR2B isimli proteinin üretimini artırdılar. Böylelikle fareler, daha önce gördükleri Lego taşlarını, suyun altındaki gizli platformun yerini öğrenmeyi başardılar. Bu fareler, kendi deneyimleri ve öğrenme kapasitelerini genleriyle de yavrularına aktardılar.

    Araştırmayı yürüten Princeton Üniversitesi moleküler biyoloji uzmanı Doç. Dr. Joe Z. Tsien, "Araştırma, genetik mühendisliğiyle öğrenme kabiliyetinin artırılabileceğini, hatta IQ takviyesi yapılabileceğini gösteriyor" dedi. Joe Z. Tsien, beyin fonksiyonlarında önemli bir rol oynayan NR2B adlı proteinin işlevinin deşifre edilmesiyle hafıza kaybına yol açan Alzheimer gibi hastalıklara karşı yeni tedavi metodlarının geliştirilebileceğini söyledi.

    Tsien'e göre, yaşın ilerlemesiyle birlikte kandaki NR2B protein seviyesi düşüyor, bu da yaşlılarda yaygın bir şekilde görülen hafıza kaybına yol açıyor. Şimdi NR2B proteini takviyesiyle hafıza kaybının önlenebileceği belirtiliyor. Ayrıca ileride farelerde olduğu gibi insanlara da gen nakli yapılabileceği söyleniyor. Ancak NR2B'nin tek riski, felce neden olması. Çünkü hem felç, hem de öğrenme kapasitesi, beyindeki aynı mekanizma tarafından düzenleniyor. NR2B seviyesi yükseldikçe felç riski artıyor.

  7. #7
    ReLaKsT - ait Kullanıcı Resmi (Avatar)
    Üyelik tarihi
    10 Eylül 2006
    Yer
    Uzaklardan
    Yaş
    32
    Mesajlar
    424
    Tecrübe Puanı
    18

    Standart --->: <<<~~~~ Génét!k ~~~~>>>

    Gen Terapisi


    Gen terapisi hastalıklarla mücadele etmek için tıbbın üzerinde çalıştığı yeni bir yöntem. Temelinde, hasta kişinin genlerini, iyileştirici proteinler üretecek şekilde değiştirmek yatıyor.

    Gen terapisi denilince ilk akla gelen, ölümcül hastalıkları ve çeşitli bedensel sakatlıkları iyileştirmek olduğu halde, hastalıklardan korunmak da, gen terapisi ile mümkün olacağı öngörülen hedeflerden biri. Gen terapisi henüz emekleme aşamasında. Halen birkaç temel araştırma loboratuvarında yürütülen bu çalışmalar ve insanlar üzerinde yapılan deneyler sonucunda, gen terapisinin insan yaşamını nasıl değiştirebileceğine dair kavramlar belirginleşiyor; ortaya bir vizyon çıkıyor.

    Gen terapisini geliştirmek için en önemli unsur, hastalıkların genetik temelini kavramak. Ebeveynlerimizden aldığımız genler bize aynı zamanda hastalıkları da taşıyorlar.

    İnsan vücudunda yaklaşık 150,000 farklı gen bulunuyor. Bütün bu genleri tanımlamak için başlatılan "İnsan Genome Projesi" 2001 haziran ayının son haftasında tamamlandı.

    Genlerimizdeki farklılıklar, bireysel farklılıklarımızı meydana getiriyor. Boyumuzun uzunluğu, gözümüzün rengi gibi tüm bireysel nitelikler, genlerimizdeki farklılaşmalar neticesinde ortaya çıkıyor. Hastalıklar da aynı şekilde kalıtımsal olarak nesilden nesile aktarılıyor. Gen terapisi işte bu noktada devreye giriyor ve hastalıkları, genetik köklerinde durdurmayı hedefliyor.

    İki tür gen terapisi var: Birincisi somatik gen terapisi. Hücrelerdeki genetik ifadeyi değiştirerek hastalıkları tedavi edici özellikler yaratmayı amaçlıyor. İkincisi ise "Germline Gen Terapisi". Bu yöntem, kalıtımsal olarak nesilden nesile aktarılan hücre çekirdeklerinin değiştirilmesi temeline dayanıyor. Ancak bu alanda araştırmalar, teknik ve etik nedenlerle son derece az ve dar kapsamlı yürütülüyor.

    Gen terapisinde karşılaşılan temel güçlüklerden biri, değiştirilmiş genetik materyali, hastanın doğru hücrelerine doğru ve güvenli bir şekilde yerleştirebilmek. Genlerin bir "ilaç" olarak kullanıldığı durumlarda hücre içine en etkin şekilde genleri yerleştirmek gerçekten de son derece zor bir iş. Hedefi şaşırmamak gerekiyor. Hedefin tutturulması durumunda ilaç, genler hücre içerisinde ömür boyu kalabiliyor ve hastalığın tedavi edilmesini sağlıyor.

    Genlerin vücuda verilmesinde özel taşıyıcılar kullanılıyor. Vektör adı verilen bu taşıyıcılar, ilaç genleri içerisinde barındıran bir çeşit kapsül olarak tanımlanabilir.

  8. #8
    ReLaKsT - ait Kullanıcı Resmi (Avatar)
    Üyelik tarihi
    10 Eylül 2006
    Yer
    Uzaklardan
    Yaş
    32
    Mesajlar
    424
    Tecrübe Puanı
    18

    Standart --->: <<<~~~~ Génét!k ~~~~>>>

    Genetik Kopyalama


    İşçilerin tulumları beyazdı; ellerinde soğuk, kadavra rengi kauçuk eldivenler vardı. Işık donuktu, ölüydü: Bir hayalet sanki!.. Yalnız mikroskopların sarı borularından zengin ve canlı bir öz akıyor, bir baştan bir başa uzanan çalışma masalarının üzerinde tatlı çizgiler yaratarak, parlatılmış tüpler boyunca tereyağ gibi yayılıyordu. "Bu da" dedi Müdür kapıyı açarak, "döllenme odası işte..."

    Doğal olarak, ilkin döllenmenin cerrahlığa dayanan başlangıcından söz etti, derken "Toplum uğruna seve seve katlanılan bir ameliyattır bu" dedi, "altı maaşlık ikramiyesi de caba... Bir yumurta bir oğulcuk, bir ergin; bu normal... Oysa, Bokanovskilenmiş bir yumurta tomurcuk açar, ürer bölünür. Eş ikizler yalnız insanların doğurduğu o eski zamanlardaki gibi yumurtanın bazen rastlantıyla bölünmesinden oluşan ikiz, üçüz parçaları değil, düzinelerle yirmişer, yirmişer." Müdür "yirmişer" diyerek sanki büyük bir bağışta bulunuyormuş gibi kollarını iki yana açtı; "yirmisi birden!.."

    Ama öğrencilerden biri bunun yararının ne olduğunu sormak gibi bir sersemlikte bulundu. "İlahi yavrucuğum!" Müdür olduğu yerde ona dönüvermişti. "Görmüyor musun? Görmüyor musun, kuzum?" Bir elini kaldırdı; heybetli bir duruşa geçmişti. "Bokanovski süreci toplumsal dengenin en başta gelen araçlarından biridir! Milyonlarca eş ikiz; toptan üretim ilkesinin sonunda biyolojiye uygulanmış olması..."

    Yukarıdaki yazı, Aldous Huxley�in 1930�larda yazdığı, geçtiğimiz ay bilim gündemini birdenbire fetheden "koyun kopyalama" deneyine değinen haberlerde sıkça gönderme yapılan, Brave New World (Cesur Yeni Dünya) romanının girişinden kısaltılarak alınmış bir bölüm. Huxley, olumsuz bir ütopya (distopya) niteliği taşıyan romanında, Alfa, Beta, Gama, Delta ve Epsilon adlarıyla, kendi içinde genetik özdeşlerden oluşan beş farklı sınıfa bölünmüş bir toplum tablosu çiziyor.

    Özdeş vatandaşların üretildiği bu hayali "Bokanovski Süreci", çağdaş anlamıyla klonlama (veya genetik kopyalama) olmasa da, sürecin yol açtığı etik (ahlaki) ve toplumbilimsel kaygılar, sekiz ay önce İskoçya�da gerçekleştirilen ve geçtiğimiz ay kamuoyuna duyurulan gelişmelerin doğurduklarına denk düşüyor. Şimdi herkesin tartıştığı, son gelişmelerin insanlık için daha insanca bir dönemin mi yoksa, hızla gerçeğe dönüşen korkunç bir distopyanın mı kapısını araladığı.

    Şubat ayının 22�sinden itibaren, İskoçya�nın Edinburg kentinde, biyoteknoloji alanında tuhaf bir gelişme kaydedildiği, "Dünyanın sonu", "Frankenstein" gibi ifadeleri de içeren dedikodularla birlikte etrafta konu olmaya başladı. Bilim çevreleri de basın da şaşkındı, çünkü, seçkin yazarların ve bazı bilim adamlarının birkaç gündür zaten haberdar oldukları ve konuyu "patlatmayı" bekledikleri bu gelişme, bir biçimde basına sızmış, dilden dile dolaşmaya başlamıştı bile.

    Normalde pek de ciddiye alınmayacak böyle bir "dedikodunun" bu denli yayılabilmesi, işin içine çeşitli dallarda makalelere yer veren saygın bilimsel dergi Nature�ın adının karışmasıyla olmuştu. Gerçekten de Nature, dedikodu niteliğini fersah fersah aşan bir bilimsel gelişmeyle ilgili bir makaleyi 27 Şubat�ta yayınlayacağını bilim yazarlarına duyurmuş ve bu tarihe kadar "ambargolu" olan bir basın bülteni dağıtmıştı.

    Batı ülkelerinde yazarlar normal olarak bu ambargolara uyar, hazırladıkları yazıları, ambargonun bittiği tarihte, aynı anda yayına verirler. Ancak, aralarında ünlü The Observer�ın da bulunduğu bazı dergi ve gazeteler ambargoyu çoktan delmiş, konuyu kamuoyuna duyurmuştu bile. Haberin, kaynağı olan Nature ve ambargoya saygı gösteren çoğu nitelikli dergi ve gazetede yer almaması da, dedikodu trafiğini artırmış, ortaya atılan spekülasyonlarla beklenenden fazla ilgi toplanabilmişti.

    Hatta, Mart ayının başlarında, koyun klonlama haberinin yarattığı ilgi ortamını değerlendirmek isteyen bazı haberciler, aynı yöntemle Oregon Primat Araştırmaları Merkezi�nde maymunların klonlandığını öne sürdüler. Oysa, Oregon�da gerçekleştirilen, embriyo hücrelerinin oldukça sıradan bir yöntemle çoğaltılmasıyla yapılmış bir deneydi. Klonlama, yetişkin bir canlıdan alınan herhangi bir somatik (bedene ait) hücrenin kullanılmasıyla canlının genetik ikizinin yaratılmasını açıklamakta. Kavramsal temelleri çoktandır hazır olan bu işlemin uygulamada gerçekleştirilemeyeceği düşünülüyordu.

    Edinburg�daki Roslin Enstitüsünden Dr. Wilmut ve ekibi bunu başarmış gibi görünüyor. "Ben bu filmi daha önce seyretmiştim!" diyenleri rahatlatmak için hemen belirtelim ki, aynı ekip 1995 yılında embriyo hücrelerini kullanarak yine ikiz koyunlar üretmiş ve bunu duyuran makaleyi yine Nature dergisinde yayımlatmıştı. Bu deney de basına yansımış, ancak, son gelişmeler kadar yankı uyandırmamıştı. Ne de olsa bu yöntem, döllenmiş yumurtanın kazayla bölünüp tek yumurta ikizlerine yol açtığı bildik süreçlerden farksızdı.

    Sıklıkla unutulduğu için tekrarlamakta yarar var ki, Wilmut�un son başarısının önemi, işe somatik bir hücrenin çekirdeğiyle başlamasında yatıyor. Bu başarının ortaklarını anarken PPL Tıbbi Araştırmalar şirketini de atlamamak gerek. Borsalarda tırmanışa geçen hisseleriyle gelişmenin meyvelerini şimdiden yemeye başlayan PPL, projenin hem amaçlarını belirleyerek hem de maddi olanakları yaratarak kuzu Dolly�nin varlığının temel sebebi olmuş.

    Dr. Wilmut�un gerçekleştirdiği başarı şöyle özetlenebilir: Yetişkin bir koyundan alınan somatik bir hücrenin çekirdeğini dahice bir yöntemle, başka bir koyuna ait, çekirdeği alınmış bir yumurtaya yerleştirmek ve bilinen "tüp bebek" yöntemiyle yeni bir koyuna yaşam vermek.

    Adını, ünlü şarkıcı Dolly Parton�dan alan kuzu Dolly, isim annesinin değilse de, DNA annesinin genetik ikizi. Dolly, sevimli görünüşüyle kamuoyunun sempatisini kazanmış ve tüm bu süreç ilginç bir bilimsel oyun olarak sunulmuşsa da gerçekte deney oldukça iyi belirlenmiş bilimsel ve maddi hedefleri olan, soğukkanlı bir süreç. Zaten Dolly�nin araştırmacılar arasındaki adı da en az varlığı kadar "soğukkanlıca" seçilmiş: 6LL3... PPL�in idari sorumlusu Dr. Ron James, şirket sırlarını kaybetme kaygısıyla maddi hedeflerini pek açığa vurmamakla birlikte, hemofili hastaları için koyunlara insan kanı pıhtılaşma faktörü ürettirmeyi de içeren pek çok önemli ticari hedefin ipuçlarını veriyor.

    PPL ve Roslin Enstitüsü�nün çalışmaları, geçmişi çok eskilere dayanan ve önemli gelişmelerin kaydedildiği bir alan olan transjenik (gen aktarılmasıyla ilgili) araştırmaların bir üst aşamaya, nükleer transfer (çekirdek aktarılması) evresine doğru ilerletilmesinden başka birşey değil.

    Yıllardır başarıyla sürdürülen transjenik çalışmalarda tek boynuzlu keçi, üç bacaklı tavuk gibi görünüşte çarpıcı, yararı kısıtlı çalışmaların yanı sıra, insan proteinlerinin hayvanlara ürettirilmesi gibi, modern tıp için çığır açıcı sayılabilecek başarılar kaydedildi. Son gelişmelere imzasını atan ekip, daha önce insan bünyesince üretilen molekülleri gen transferi yöntemiyle bir koyuna ürettirmeyi başarmıştı.

    Söz konusu deneyde gerek duyulan moleküllerin koyunun tüm hücrelerinde değil, sadece süt bezlerinde sentezlenmesinin sağlanması, koyunun "ilaç fabrikası" olarak değerlendirilmesini beraberinde getiriyordu. Dolly başarısının en önemli potansiyel yararı da bununla ilgili zaten. Gen transferi yöntemiyle, istediğiniz maddeyi sentezleyebilen bir canlıya sahip olduğunuzda, madde verimini artırmak üzere aynı süreci zaman ve para harcayarak yinelemeye çabalamak yerine elinizdeki canlının genetik ikizlerini yaratabilirseniz, ticari değer arz edebilecek miktarda ilaç hammaddesi üretimine geçebilirsiniz.

    Elinizde birkaç on tane genetik özdeş canlı biriktikten sonra, bu küçük sürüyü doğal yollardan üremeye bırakacak olursanız, hem "yatırımınız" kendi kendine büyüyecek, hem de genetik çeşitlilik yeniden oluşmaya başlayacağından, tek bir virüs tipinin tüm "fabrikayı" yok etmesinin önünü alacaksınız demektir.

    Biraz Ayrıntı

    İskoç ekibin gerçekleştirdiği klonlama deneyinin, dünyanın pek çok bölgesine dağılmış sayısız standart biyoteknoloji laboratuvarında "kolayca" gerçekleştirilebileceği söyleniyor. Yine de uygulanan yöntem, günlük gazetelerdeki basit şemalarda anlatıldığı kadar kolay ve hemen tekrarlanabilir türden değil. İskoç ekibin başarısı ve önceki sayısız benzeri çalışmanın başarısızlığı, Wilmut�un, verici koyundan alınan hücre çekirdeğiyle, kullanılan embriyonik hücrenin "frekanslarını" çok hassas biçimde çakıştırabilmesine dayanıyor.

    Bu yöntemle araştırmacılar, yetişkin çekirdeğin genetik saatini sıfırlamayı, tüm gelişim sürecini başa almayı becerebilmişler. Yöntemin ayrıntılarına girmeden önce bazı temel kavramlara açıklık getirmekte yarar var.

    Çoğu memeli canlı gibi insan bedeni de milyarlarca hücreden oluşuyor. Bu hücrelerin milyonlarcası her saniye bölünmeyi sürdürerek beden gelişimini devam ettiriyor ve yıpranmış hücreleri yeniliyor. Bu hücrelerin önemli kısmı bedenimizin belli başlı bölümlerini oluşturan "somatik hücreler." Tek istisna, üreme hücreleri. Eşeyli üreme, gametlerin (sperm ve yumurta) ortaya çıktığı "mayoz bölünme"yle başlıyor.

    Cinsel birleşme sonucunda, spermin yumurtayı döllemesiyle de yeni bir canlının ilk hücresi "zigot" oluşuyor. Bu noktadan sonra gelişmeye dönük hücre bölünmeleri, "mayoz" değil, "mitoz" yoluyla ilerliyor.

    Koyun ve insan hücrelerinin de dahil olduğu ökaryotik yani, çekirdeği olan hücreler, farklı gelişim evreleri içeren bir yaşam döngüsü geçiriyorlar. Bu döngüyü, hücrenin görece durağan olduğu "interfaz" ve belirgin biçimde bölünmenin gerçekleştiği mitoz evrelerine ayırmak mümkün.

    Hücre, yaşam döngüsünün yüzde doksan kadarını interfaz evresinde geçiriyor. Aslında, bu duraklama evresi göründüğü kadar sakin değil; hücre, tüm bileşenlerini DNA�yı sona bırakacak biçimde çoğaltarak, bölünmeye hazırlanıyor. Alt evreleri son derece iç içe girmiş olan interfaz evresini işlevsellik açısından G1, S ve G2 alt evrelerine ayırmak yerleşmiş bir gelenek. Yani, hücrenin yaşam döngüsü bu üç evre ve M (mitoz)�dan oluşuyor. G1 evresi, DNA dışındaki bileşenlerin çoğaldığı bir dinlenme dönemi. S, DNA�nın bölünmesiyle sonuçlanan bir geçiş evresi. G2 ise, iç gelişmenin tamamlanıp, hücrenin mitoz yoluyla bölünmeye hazırlandığı süreci içeriyor.

    Hücrelerin hangi evreyi ne kadar sürede tamamlayacakları bir biçimde programlanmış durumda. Belli bir organizmanın tüm hücreleri bu evreleri aynı sürede tamamlıyorlar. Yine de, ani çevresel koşul değişiklikleri hücreleri G1 evresinde kıstırabiliyor; sözgelimi, besleyici maddelerin miktarı birdenbire minimum düzeye düştüğünde.

    G1 evresinin belli bir aşamasında, öncesinde bu duraklamaya izin verilen sabit bir kritik noktası var. Bu kritik nokta aşılırsa, çevresel koşullar ne yönde olursa olsun, DNA replikasyonunun önü alınamıyor. İleride göreceğimiz gibi, bu noktanın denetim altında tutulabilmesi, Wilmut ve ekibinin başarılı bir klonlama gerçekleştirebilmelerinin altın anahtarı olmuştur.

    Bu noktada bir parantez açarak G1, S, G2 ve M evrelerinin denetim altına alınmasının, hücrenin yaşam döngüsünü olduğu kadar, hücrenin özelleşmesini, sözgelimi beyinden veya kas hücrelerinden hangisine dönüşeceğini de kontrol altına alabilmeyi, bir başka deyişle, hücrenin genetik saatini sıfırlamayı sağladığını ekleyelim. Wilmut ve ekibi Dolly�i klonlayıncaya kadar bu sürecin tersinmez olduğu, söz gelimi, bir defa kas hücresi olmaya karar vermiş bir hücrenin yeniden programlanamayacağı zannediliyordu. Peki Wilmut bunu nasıl başardı?

    Soruyu tersinden cevaplayacak olursak, diğerlerinin bunu başaramamalarının nedeninin, kullandıkları somatik hücrelerin çekirdeklerini S veya G2 evrelerindeki konakçı hücrelere yerleştirmeleri olduğunu söyleyebiliriz. Eski kuramsal bilgilere göre bu yöntemin işe yaraması gerekiyordu, çünkü çekirdeğin mitoza yaklaşmış olması avantaj olarak görülüyordu. Ancak bu denemelerde, işler bir türlü yolunda gitmedi.

    Kaynaştırmadan sonra, hücre fazladan bir parça daha mitoz geçiriyor ve yararsız, kopuk kromozom parçaları meydana geliyordu. Bu "korsan" genler, gelişimin normal seyrini sürdürmesi için ciddi bir engel oluşturuyordu. Dersini çok iyi çalışmış olan Wilmut, bu olumsuz deneyleri değerlendirerek hücreyi G1 evresinin kritik noktadan önceki duraksama döneminde, "G0 evresinde" kıstırmaya karar verdi.

    Verici koyundan alınan meme dokusu hücrelerini kültür ortamında gelişmeye bırakan Wilmut, hücrelerin geçirdiği evreleri sıkı gözetim altında tutarak bir hücreyi G0 evresinde kıstırıp bu haliyle durağanlığa bırakmayı başarmıştı. Bunun için, hücrenin besin ortamını neredeyse öldürme sınırına kadar geriletmiş, tüm süreci dondurarak bir anlamda genetik saati de sıfırlayabilmişti. Üstelik bu evre, kaynaştırılacağı yumurta hücresinin mayoz gelişim sırasında girdiği, bu işlem için en uygun olan metafaz-II evresiyle de mükemmel bir uyum içindeydi.

    İşlemin diğer kısımları yemek tariflerinde olduğu kadar sıradan ve kolay uygulanabilir nitelikte. G0 evresindeki çekirdek metafaz-II evresindeki yumurtayla kaynaştırılıp, normal besin koşulları ve hafif bir elektrik şoku etkisiyle olağan çoğalma sürecine yeniden sokulduğunda, her şey tüp bebek olarak bilinen, in vitro fertilizasyon sürecindeki işleyişe uygun hale geliyor. Zigot, anne koyunun rahmine yerleştiriliyor ve gerekli hormonlarla normal hamilelik süreci başlatılıyor.

    Wilmut ve ekibinin gerçekleştirdikleri hakkında bilinenler, yukarıda kaba hatlarıyla anlatılanlarla sınırlı. Sürecin duyurulmayan kritik bir evresi varsa, bu ticari bir sır olarak kalacağa benziyor. Ancak, herkesin olup bitenler hakkında aynı bilgilere sahip olması, deneyin başarısı konusunda kimsenin şüphe duymamasını gerektirmiyor. 277 denemeden sadece birinin başarılı olması başta olmak üzere, çoğu uzmanın takıldığı pek çok soru işareti var. Her şeyin ötesinde, herhangi bir olgunun bilimsel gelişme olarak kabul edilmesi için, sürecin yinelenebilirliğinin gösterilmesi gerekiyor.

    Bir embriyolog, Jonathan Slack, çok daha temel şüpheleri öne sürüyor: "Araştırmacılar, yumurta hücresindeki DNA�ları tümüyle temizleyememiş olabilirler. Dolayısıyla Dolly, sıradan bir koyun olabilir." Slack, alınan meme hücresinin henüz tamamen özelleşmemiş olabileceğini, böyle vakalara meme hücrelerinde, bedenin diğer kısımlarına göre daha sık rastlanılabildiğini de ekliyor. Zaten Wilmut da, bedenin diğer kısımlarından alınan hücrelerin aynı sonucu verebileceğinden bizzat şüpheli. Örneğin, büyük olasılıkla kas veya beyin hücrelerinin asla bu amaçla kullanılamayacaklarını belirtiyor.

    Üstüne üstlük, koyun bu deneylerde kullanılabilecek canlılar arasında biraz "ayrıcalıklı" bir örnek. Koyun embriyolarında hücresel özelleşme süreci zigot ancak 8-16 hücreye bölündükten sonra başlıyor. Geleneksel laboratuvar canlısı farelerde ise aynı süreç ilk bölünmeden itibaren gözlenebiliyor. İnsanlarda ise ikinci bölünmeden itibaren... Bu durum, aynı deneyin fare ve insanlarda asla başarılı olamaması olasılığını beraberinde getiriyor.

    Dile getirilen açık noktalardan biri de, hücrelerde DNA barındıran tek organelin çekirdek olmayışı. Kendi DNA�sına sahip organellerden mitokondrinin özellikle önem taşıdığı savlanıyor. Memeli hayvanlarda mitokondriyal DNA, embriyo gelişimi sırasında sadece anneden alınıyor.

    Her yumurta hücresi, farklı tipte DNA�lara sahip yüzlerce mitokondriyle donatılmış. Bu mitokondriler zigotun bölünmesinin ileri evrelerinde, embriyo hücrelerine dengeli bir biçimde dağılıyor; ancak, canlının daha ileri gelişim evrelerinde, bu denge belli tipteki DNA�lara doğru kayabiliyor. Parkinson, Alzheimer gibi hastalıkların temelinde bu mitokondriyal DNA kayması sürecinin etkileri var. Bu yüzden kimileri, sağlıklı bir kuzu olarak doğan Dolly�nin, zigot gelişimine müdahele edilmiş olması yüzünden sağlıksız bir koyun olarak yaşlanabileceğini öne sürüyorlar. Şimdilik Dolly�nin tek sağlıksız yönü, basına teşhir edilirken sabit tutulması amacıyla fazla beslenmesi yüzünden ortaya çıkan tombulluğu.

    Klonlamalı mı?

    Klonlamanın özellikle de insan klonlama konusunun etik boyutu kamuoyunca, günlük yaşamda kültürün, temel bilimsel birikimin, tarih, siyaset ve toplumbilimin en yaygın ve temel kavramlarıyla tartışılabilir nitelik kazanmıştır. Nükleer enerji kullanımı, hormon destekli tarım, ozon tabakasına zarar veren gazların üretimi gibi, farklı toplum kesimlerince kolayca anlaşılabilir ve tartışılabilir kabul edilen klonlama, şimdiden kamuoyunun gündeminde yerini aldı.

    Kamuoyunun, bilimsel ve teknolojik gelişmelerin uygulanıp uygulanmaması konusunda birtakım ahlaki gerekçelerle ne şekilde ve ne ölçüde yaptırım uygulayabileceği tartışmalı olsa da, şu anda kamuoyunun isteksizliği klonlama çalışmalarının daha ileri aşamalara taşınmasına en güçlü engel olarak gösteriliyor. Oysa, "tüp bebek" diye bilinen in vitro fertilizasyonun, başlangıçtaki şiddetli tepkilerden sonra kolayca kabullenilmesi, işin içine "çocuk sahibi olma isteği ve hakkı" karıştığı durumlarda (aynı argüman klonlama konusunda da sıkça kullanılıyor) toplumun ne kadar kolay ikna olabileceğinin bir göstergesi.

    Bilimkurgu romanları ve filmlerinde kaba hatlarıyla çokça tartışılmış olan klonlama konusunda halihazırda belli belirsiz bir kamuoyu "oluşturulmuş" durumda. Şu anda sürmekte olan tartışmaların bilinen yanlışlara yeniden düşmemesi için birkaç temel olguya açıklık getirmek gerekiyor. Olası yanılgıların en sık rastlananı, klonlanmış bir canlının, (tartışmalara sıkça insan da dahil ediliyor) genin alındığı canlının fizyolojik özellikleri bir yana, kişilik özellikleri bakımından özdeşi olacağı kanısı.

    Kazanılmış özelliklerin kalıtsal yolla taşınabileceği yanılgısı, Philosophie Zooloique (Zoolojinin Felsefesi) adlı ünlü yapıtı 1809 yılında yayınlanmış olan, Fransız zoolog Jean Baptiste Lamarck�a dayanıyor. Lamarck�ın görüşlerinin takipçileri, insanların gözlemlenebilir kişilik özelliklerinin önemli ölçüde kalıtsal nitelik taşıdığını savlayarak, çevresel koşulların gelişim üzerindeki etkilerini neredeyse tamamen yadsıyorlardı. Oysa, genetik, evrim, psikoloji gibi alanların ortaya koyduğu çağdaş ölçütler, kazanılmış karakterlerin kalıtsal nitelik gösteremeyeceğini ortaya koyarak, kişilik oluşumunda çevresel etmenlerin güçlü bir paya sahip olduğunu kanıtlamıştır.

    Bu bağlamda, basında da yankı bulan "koyunlar zaten birbirlerine benzerler" esprisinin aslında ciddi bilimsel doğrulara işaret ettiğinin altını çizmek gerekiyor. Klonlanmış bir koyunun, genetik annesinin genetik ikizi olduğu ölçülerek gösterilebilir bir gerçektir. Oysa, gözlemlenebilir kişilik özellikleri oldukça kısıtlı olan koyunların birbirlerine benzemeleri kaçınılmazdır. Çok daha karmaşık bir organizma olan insanoğlu, sayısız gözlemlenebilir kişilik özelliği sayesinde, genetik ikizinden kolayca ayırt edilebilir.

    Tüm bunların ötesinde, klonlanmış bir insanın sadece kişilik bakımından değil, fizyolojik ve bedensel özellikleri bakımından da, genetik ikizinden farklı olacağını peşinen kabullenmek gerekiyor. Bir bebeğin biçimsel özelliklerinin ana rahminde geçirdiği gelişim süreci içerisinde tümüyle DNA�sı tarafından belirlendiği görüşü yaygın bir yanılgı. DNA molekülü, insan geometrisine dair tüm bilgileri en sadeleşmiş biçimiyle bile bütünüyle kapsayamayacak kadar küçük.

    Çoğu biçimsel özellik, akışkan dinamiği, organik kimya gibi alanlardaki temel evrensel yasaların kontrolünde meydana geliyor. Bu süreçte de, her zaman için rastlantı ve farklılaşmalara yeterince yer var. Bir genetik ikiz, kuramsal açıdan, eşine en fazla eş yumurta ikizlerinin birbirlerine benzedikleri kadar benzeyebilir. Uygulamada ise, benzerlik derecesi çok daha düşük olacaktır; aynı rahimde aynı anda gelişmediği, aynı fiziksel ve kültürel ortamda doğup büyüyemediği için...

    İşin bu boyutunu da göz önünde bulunduran Aldoux Huxley, romanında, Bokanovski Süreci�yle çoğaltılmış bebekleri, yetiştirme çiftliklerinde psikolojik koşullandırmaya tutma gereği duymuştu. Benzer biçimde, 1976�da yazdığı The Boys from Brazil romanında Adolf Hitler�den klonlanan genç Hitler�lerin öyküsünü kurgulayan Ira Levin, klonları, Adolf Hitler�in kişiliğinin geliştiği tüm olaylar zincirinin benzerine tabi tutma gereğini hissetmişti.

    Tüm bu "hal çarelerine" rağmen, kopya insanın genetik annesinden çoğu yönden farklı olması kaçınılmaz görünüyor. Diğer tüm koşullar denk olsa bile, kopya birey, aynı zamanda ikizi olan bir anneye sahip olmasından psikolojik bakımdan etkilenecektir. Sağduyumuz bize Hitler�i genlerinin değil, Weimar Cumhuriyeti sonrası sosyo-ekonomik koşulların ve genç Adolf�un kıstırıldığı maddi ve manevi bunalımların yarattığını öğretiyor.

    Tüm bunların ışığında, klonlama konusundaki popüler tartışmaları, tıkanıp kaldıkları, "beklenmedik bir ikize sahip olma" fobisinden kurtarılıp, daha gerçekçi zeminlere çekilmesi gerekiyor. Gen havuzunun (belli bir topluluktaki genetik çeşitlilik) daralması, hayvancılığın geleneksel yapısından koparılıp biyoteknoloji şirketlerinin güdümüne girmesi, yol açılabilecek genetik bozuklukların kontrolden çıkması, bu alanda çalışan bazı şirketlerin (söz gelimi PPL�in) tüm tekel karşıtı yasal önlemleri delerek ciddi ekonomik dengesizliklere yol açmasıgibi akla gelebilecek sayısız somut etik sorununun tartışılması gerekiyor. Yoksa, akademik organlardan dini cemaatlere kadar sayısız grup gelişmeleri "kitaba uydurma" çabasıyla, kısır tartışmalara girebilir.

    Örneğin, Budist bir araştırmacı, Dolly�nin eski yaşamında ne gibi bir kabahat işleyip de bu yaşama klonlanmış olarak gelmeyi hak ettiği üzerine kafa yoruyormuş.

    Aslında biyoteknolojik tekelcilik tehdidine, Cesur Yeni Dünya�da Aldous Huxley de işaret etmişti: "İç ve Dış Salgı Tröstü alanından hormon ve sütleriyle Fernham Royal�daki büyük fabrikaya hammadde sağlayan şu binlerce davarın böğürtüsü duyuluyordu..."

    İnsanoğlunun temel kaygıları, şimdilik bazı temel koşullarda klonlamayla çelişiyor gibi görülüyor: Bir çiftçi düşünün ki, kendisi için tüm evreni ifade eden kasabasında herkese hayranlıktan parmaklarını ısırtan bir danaya sahip olsun. Bu danayı klonlayıp tüm sürüsünü özdeş yapmayı ister miydi? Büyük olasılıkla biraz düşündükten sonra bundan vazgeçerdi.

    Danasının biricik oluşu ve genetik çeşitliliği sayesinde bu danaya yaşam veren sürüsünün daha da güzel bir dana doğurması olasılığı çok daha değerli. Ömrü boyunca aynı dananın ikizlerine sahip olmayı kabullenmiş bir çiftçinin komşusu her an elinde daha güzel bir danayı ipinden tutarak getirebilir.

    Ünlüler, Köpek Kopyalama Derdinde

    Koyun kopyalayan bilim adamları, şimdi de bu koyunları güdecek köpekleri kopyalamaya hazırlanıyor. Beş yıl içinde, 3 milyar lirayı göze alanlar sevgili köpeklerinin tıpatıp kopyasını yaptırabilecek. Birçok ünlü şimdiden sırada. Bu yolla uzman köpekler de çoğaltılacak. Sevgili köpeğinizden hiç ayrılmak istemiyor musunuz?

    Bu dileğiniz, beş yıl içinde gerçekleşebilecek. Bütün yapmanız gereken, köpeğinizden aldırdığınız hücre örneğini, Teksas'ın Austin kenti yakınlarındaki A&M Üniversitesi laboratuvarı bünyesinde kurulan ve kısa bir süre sonra açılacak olan �Köpekbank�a 450 milyon lira karşılığında vermek.

    The Sunday Times gazetesinde yer alan bir habere göre aArtık yapılacak iş, Üniversite'de yapılan çalışmaların başarıyla sonuçlanmasını beklemek. Bundan sonra sıra, köpeğinizin tıpa tıp aynısının kopyalanmasına geliyor. Eğer bu bekleme dönemi içinde köpeğiniz dünya değiştirdiyse tasa etmeyin. Sevgili köpeğinizin havlamalarını, yeniden duyabilirsiniz.

    3 Milyar Lira

    Yalnız sıkı durun; bu kez ödemeniz gereken para, tam 3 milyar lira. Üniversite'deki laboratuvarda yapılan genetik çalışmaların başarıyla sürdüğü ve sonucun beş yıl içinde alınacağı belirtiliyor. Missyplicity adlı proje, ünlü simaların yanında, sıradan insanların da büyük ilgisini çekiyor. Daha şimdiden, aralarında film yıldızlarının, şarkıcıların da bulunduğu yüzlerce kişi, köpeklerini kopyalatmak için sıraya girdiler. Bu ünlüler arasında, ABD�li oyuncu Elizabeth Taylor, Amerikalı rap yıldızı Snoop Doggy Dogg gibi isimler de bulunuyor.

    Projeye 565 milyar liralık bir bağış yapan Amerikalı zenginin köpeği Missy, kopyalanan ilk köpek olarak onurlanacak. Bu projenin başarıyla sonuçlanmasıyla, kedi kopyalamanın yolu da açılacak. Bilim adamları, bu çalışmayla iki hedefi tutturmayı planlıyor. Biri, köpeklerin biyolojik yapısı hakkında bilgilerin artırılması.

    Uzman Köpekler

    Diğeri de, köpek kopyalama laboratuvarlarının kurulması. Böylece, örneğin bomba uzmanı köpeklerin kopyalanarak, bu tür köpeklerin eğitim aşamasında başarısızlıkla karşılaşılmasını engellemek. Kopyalanan bomba uzmanı köpeklerin, genlerinden ötürü, bu konuda başarılı olma olasılıkları oldukça yüksek görülüyor.

    Proje için çalışan ekibin başkanı Dr.Mark Westhusin, �işlem oldukça pahalı. Ancak zamanla teknik geliştikçe, fiyatlar düşecek� diyor. Projenin, büyük bir pazar payıyla kárlı bir işe dönüşmesi beklenirken, 10 yıl sonra, belki de kopya koyun sürülerini yine kopya çoban köpekleri koruyacak.

  9. #9
    ReLaKsT - ait Kullanıcı Resmi (Avatar)
    Üyelik tarihi
    10 Eylül 2006
    Yer
    Uzaklardan
    Yaş
    32
    Mesajlar
    424
    Tecrübe Puanı
    18

    Standart --->: <<<~~~~ Génét!k ~~~~>>>

    Genetik Sözlük


    Adenin: Adenintimin protein çiftinin bir azotlu bir bileşeni.

    Amino-asit: Hücrelerimizi oluşturan proteinlerin yapıtaşı olan "canlı" moleküller. 20 ayrı türü vardır. Vücudumuzdaki proteinlerin hangi amino-asitlerden oluşacağını genlerimiz belirler.



    BAC (bakteriyel yapay kromozom): DNA parçacıklarını kopyalamakta kullanılan ve bir cins bakteride bulunan bir madde.

    Biyoteknoloji: Özellikle DNA ve hücreyle ilgili konularda kullanılan biyolojik tekniklere verilen ad.



    C DNA: Tamamlayıcı DNA. Haberci RNA şablonundan sentezlenerek elde edilen DNA şeklinde de tanımlanabilir.



    DNA: (Deoksi-ribo-nükleik asit) Genetik bilgileri içeren ve hücre çekirdeğinde yer alan ikili sarmal molekül.

    Domain: Bir protein içerisinde bulunan ve kendine ait bir fonksiyona sahip bölüm. Tek bir protein içindeki domain bölümleri, hep birlikte proteinin total fonksiyonunu belirler.



    E.coli: Küçük boyutlu gen yapısı dolayısıyla genetik hastalık göstermeyen ve loboratuvarda kolaylıkla üretilen bir cins bakteri. Bu sebeplerden dolayı genetik çalışmalarda yaygın biçimde kullanılır.

    Elektroforesis: DNA parçacılkları ya da proteinler gibi iri molekülleri, benzeri moleküllerle birarada bulunduğu karışımlarından ayrıştırmakta kullanılan bir yöntem.

    Enzim: Katalizör proteinlere verilen ad. Biyokimyasal tepkimelerin gerçekleşme sürecini hızlandırır, ancak sürecin oluş biçimini etkilemezler.



    Fiziksel Harita: DNA'daki kalıtıma bağlı olmayan, yani her DNA'da bulunan tanımlanabilir nirengi noktalarını gösteren tablo. İnsan genleri için en ayrıntısız fiziksel harita 23 kromozomun eklemlenmelerini gösterir. En ayrıntılısıysa koromozomlardaki nükleotid dizilerini gösterir.



    Gen: Kalıtımın temel fiziksel ve işlevsel birimi. Her gen, protein veya RNA molekülü gibi özel bir işlev taşıyan kromozomların belli bir noktasındaki nükleotid dizilerinden oluşur.

    Gen Ailesi: Benzer ürünler veren ve birbiriyle yakından ilintili genlerin meydana getirdiği grup.

    Gen Haritalaması: Bir DNA molekülündeki genlerin göreceli konumlarının belirlenmesi. Bu haritalamada hangi genin bir diğerine göre molekülün neresinde yar aldığı ve aralarında neler bulunduğu belirlenir.

    Gen Tedavisi: Kalıtsal bozukluğun düzeltilmesi için sağlıklı DNA'nın, hastalıklı hücrelere doğrudan zerk edilmesi.

    Genetik Kod: mRNA boyunca üçlü gruplar halinde bulunan ve protein sentezleme sırasında üretilen aminoasit dizilerinin düzenini belirleyen nükleotid dizileri.

    Genetik: Belirli kalısal özelliklerin örüntüsünü inceleyen bilim dalı. Genom: Her bir canlının kromozomlarında yer alan kalıtsal malzeme.

    Genom Projesi: İnsanın ya da başka canlıların genomlarının tamamının ya da bir kısmının haritasını ve diziliş biçimlerini saptamayı hedeflemeye yönelik araştırmalar.



    Hibridizasyon (Melezleme): Birbirini bütünleyen iki DNA zincirinin biraraya gelerek ikili sarmal biçimindeki molekülü oluşturması.



    Kilobase: 1000 nükleotidlik DNA parçalarını esas alan ölçü birimi.

    Klon Bankası (Genom arşivi): Bir canlının tüm genomunu temsil eden DNA parçacıklarının klonları.

    Kromozom: Hücrenin kendi kendini eksiksiz olarak kopylalamasına yarayan tüm bilgileri içeren ve hücre çekirdeğinde yer alan DNAlar.



    Mutasyon: DNA dizisinde ortaya çıkan ve kalıtımla aktarılabilen değişiklik.



    Nukleus (Çekirdek) : Hücredeki genetik malzemeyi barındıran kısım.



    Onkogen: Bazı türleri kanserle de ilşkili olan bir gen. Onkogenlerin çoğu doğrudan ya da dolaylı olarak hücrelerin büyüme hızını etkiler.

    Otoradyografi: Özel maddelerle boyanmış moleküllerin ya da molekül parçalarının röntgen ışınlarıyla incelenmesi.



    Protein: Belli bir sırada dizilmiş bir veya birkaç amino-asit zincirinden oluşan büyük moleküller. Bu dizilişi genetik kodlamadaki nükleotidler belirler. Proteinler vücudumuzdaki hücrelerin, dokuların ve organların oluşması, işlevlerini görebilmesi ve bunu uyum içinde yapmaları için gereklidir. Her proteinin kendine özgü bir işlevi vardır. Sözgelimi hormonlar ve enzimler adlarını duyduğumuz protein türlerinden ikisidir.



    RNA: Hücre sıvısında ve çekirdeğinde bulunan kimyasal bir maddedir. Protein sentezlemesi başta olmak üzere hücre içi kimyasal faaliyetlerde çok önemli bir rolü vardır. Yapısı DNA'ya benzer. Ama herbiri farklı işlevlere sahip birkaç cinsi vardır.

    Ribozomal RNA: Hücre ribozomlarında bulunan bir çeşit RNA.

    Ribozom: Hücrede protein sentezinin yapıldığı yerlerdir. Özel ribozomal RNA'larla proteinler içerir.



    Telomere: Kromozomun bitiş kısmı. Bu özel yapı, doşğrusal DNA moleküllerinin kendi kendini üretmesi ve dengeli yapısını koruması işlerine yarar Transkripsiyon: Bir DNA parçasından kopyalanan RNA sentezi.



    Virüs: Sadece içine girdiği bir başka hücre içinde yeniden üreyebilen ve hücresel yapısı olmayan canlı. Virüsler bir protein kılıfı içindeki nükleik asitlerden ibarettir. Bazılarınınsa basit bir zarı vardır. Virüsler çoğalmak için, içine girdikleri hücrenin sentezleme yeteneğinden yararlanır.

  10. #10
    ReLaKsT - ait Kullanıcı Resmi (Avatar)
    Üyelik tarihi
    10 Eylül 2006
    Yer
    Uzaklardan
    Yaş
    32
    Mesajlar
    424
    Tecrübe Puanı
    18

    Standart --->: <<<~~~~ Génét!k ~~~~>>>

    Genetik Tedavi


    ABD'nin saygın gazetelerinden New York Times Gazetesi'ne göre Amerikalı bilimadamları, maymunlara virüs aracılığıyla gen naklederek, vücudun tedavi amaçlı protein üretmesini sağladılar. Yeni geliştirilen teknik, ileride kanser başta olmak üzere birçok hastalığın tedavisinde kullanılabilecek.

    Yeni teknikte, önce bir virüsün içine tedavi amaçlı gen naklediliyor. Daha sonra bu virüs vücuda enjekte ediliyor. Sözkonusu teknik, geçtiğimiz günlerde ABD'nin Philadelphia Kenti'ndeki Pennsylvania Üniversitesi'nin genetik tedavi enstitüsünde, kobay fareler ve makak maymunları üzerinde dönendi.

    James H. Wilson liderliğinde yapılan denemede, hayvanlara, iliğin daha fazla alyuvar üretmesini sağlayacak gen nakledildi. Gen naklinde şöyle bir yol izlendi: Genin hedef hücreye taşınmasında "adeno" benzeri sadece iki geni olan bir virüs kullanıldı. Virüs, tehlikeli genleri çıkarılarak baş ve kuyruktan oluşan içi boş bir taşıyıcı haline getirildi.

    Hücreye taşınması istenen tedavi amaçlı gen ise, taşıyıcı haline gelmiş virüsün içine yerleştirildi. "Truva Atı" misali, virüsün içine yerleştirilen gen vücuda nakledildi. Böylece "Truva Atı" metoduyla bağışıklık sisteminin geni reddetmesi engellendi.

    Virüs sayesinde "erythropoietin" hormonunun üretimini sağlayan gen, hedef kemik hücrelerine taşındı. Erythropoietin hormonu, iliğin daha fazla alyuvar üretmesini sağlıyor. Gen dışarıdan "rapamycin" hapı verilerek çalıştırmaya başlandı. Bir başka deyişle genin harekete geçirilmesi için "rapamycin" takviyesi yapıldı.

    "Truva Atı" virüslerle, gen nakledilen maymunlarda yapılan kan ölçümlerinde, genin birkaç gün boyunca aktif olduğu anlaşıldı. Bilimadamları, şimdi genin istendiğinde açılıp, istendiğinde kapanmasını sağlayacak bir anahtar mekanizma üzerinde çalışıyorlar.

    Diyaliz hastaları gibi alyuvar seviyesi düşük olan hastalara, düzenli olarak erythropoietin verildiğine işaret eden bilimadamları, gelecekte gen nakli ile bu tedavinin kolaylaşabileceğini söylüyor.

    Dr Wilson ve ekibi, sadece alyuvar proteinleri üzerine değil, kanserli hücrelere, akciğer, göz ve karaciğere gen taşıyacak projeler üzerinde de çalışıyor. Gelecekte, kanserden genetik hastalıklara kadar birçok hastalığın, gen terapisiyle tedavi edilebileceği belirtiliyor.

Sayfa 1/3 123 SonSon

Bu Konudaki Etiketler

Bu Konuyu Paylaşın !

Yetkileriniz

  • Konu Acma Yetkiniz Yok
  • Cevap Yazma Yetkiniz Yok
  • Eklenti Yükleme Yetkiniz Yok
  • Mesajınızı Değiştirme Yetkiniz Yok
  •  
eşarp bağlama - Uyar Optik - Mustafa Uyar - ılgın - eşarp yapma -
Eğitim ve Ögretim Genel